In this clinical and neurophysiological study using a novel cold stimulator we aim at investigating whether cold evoked potentials may prove to be a reliable diagnostic tool to assess trigeminal small-fibre function.Using a novel device consisting of micro-Peltier elements, we recorded cold evoked potentials after stimulating the supraorbital and perioral regions and the hand dorsum in 15 healthy participants and in two patients with exemplary facial neuropathic pain conditions. We measured peripheral conduction velocity at the upper arm and studied the brain generators using source analysis. In healthy participants and patients, we also compared cold evoked potentials with laser evoked potentials.In the healthy participants, cold stimulation evoked reproducible scalp potentials, similar to those elicited by laser pulses, though with a latency of about 30 ms longer. The mean peripheral conduction velocity, estimated at the upper arm, was 12.7 m/s. The main waves of the scalp potentials originated from the anterior cingulate gyrus and were preceded by activity in the bilateral opercular regions and bilateral dorso-lateral frontal regions. Unlike laser stimulation, cold stimulation evoked scalp potential of similar amplitude across perioral, supraorbital and hand dorsum stimulation. In patients with facial neuropathic pain, cold evoked potential recording showed the selective damage of cold pathways providing complementary information to laser evoked potential recording.Our clinical and neurophysiological study shows that this new device provides reliable information on trigeminal small-fibres mediating cold sensation, and might be useful for investigating patients with facial neuropathic pain associated with a distinct damage of cold-mediating fibres.

Cooling the skin for assessing small-fibre function / Leone, C; Dufour, A; Di Stefano, G; Fasolino, A; Di Lionardo, A; La Cesa, S; Galosi, E; Valeriani, M; Nolano, M; Cruccu, G; Truini, A. - In: PAIN. - ISSN 0304-3959. - 160:9(2019), pp. 1967-1975. [10.1097/j.pain.0000000000001584]

Cooling the skin for assessing small-fibre function

Leone, C
Primo
;
Di Stefano, G;Fasolino, A;Di Lionardo, A;La Cesa, S;Galosi, E;Cruccu, G
Penultimo
;
Truini, A
Ultimo
2019

Abstract

In this clinical and neurophysiological study using a novel cold stimulator we aim at investigating whether cold evoked potentials may prove to be a reliable diagnostic tool to assess trigeminal small-fibre function.Using a novel device consisting of micro-Peltier elements, we recorded cold evoked potentials after stimulating the supraorbital and perioral regions and the hand dorsum in 15 healthy participants and in two patients with exemplary facial neuropathic pain conditions. We measured peripheral conduction velocity at the upper arm and studied the brain generators using source analysis. In healthy participants and patients, we also compared cold evoked potentials with laser evoked potentials.In the healthy participants, cold stimulation evoked reproducible scalp potentials, similar to those elicited by laser pulses, though with a latency of about 30 ms longer. The mean peripheral conduction velocity, estimated at the upper arm, was 12.7 m/s. The main waves of the scalp potentials originated from the anterior cingulate gyrus and were preceded by activity in the bilateral opercular regions and bilateral dorso-lateral frontal regions. Unlike laser stimulation, cold stimulation evoked scalp potential of similar amplitude across perioral, supraorbital and hand dorsum stimulation. In patients with facial neuropathic pain, cold evoked potential recording showed the selective damage of cold pathways providing complementary information to laser evoked potential recording.Our clinical and neurophysiological study shows that this new device provides reliable information on trigeminal small-fibres mediating cold sensation, and might be useful for investigating patients with facial neuropathic pain associated with a distinct damage of cold-mediating fibres.
2019
cold evoked potentials; nerve conduction velocity; neurophysiological study
01 Pubblicazione su rivista::01a Articolo in rivista
Cooling the skin for assessing small-fibre function / Leone, C; Dufour, A; Di Stefano, G; Fasolino, A; Di Lionardo, A; La Cesa, S; Galosi, E; Valeriani, M; Nolano, M; Cruccu, G; Truini, A. - In: PAIN. - ISSN 0304-3959. - 160:9(2019), pp. 1967-1975. [10.1097/j.pain.0000000000001584]
File allegati a questo prodotto
File Dimensione Formato  
Leone_Cooling_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.54 MB
Formato Adobe PDF
6.54 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1261312
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact